Solveeit Logo

Question

Question: The line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = \(\frac { 3 } { 2 }\) and t...

The line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = 32\frac { 3 } { 2 } and the curve y = 1 + 4x – x2. The value of m is -

A

136\frac { 13 } { 6 }

B

138\frac { 13 } { 8 }

C

813\frac { 8 } { 13 }

D

613\frac { 6 } { 13 }

Answer

136\frac { 13 } { 6 }

Explanation

Solution

y = 1 + 4x – x2 .. (1) gives (x – 2)2 = – (y – 5), which is parabola with vertex at (2, 5). Also it cuts x-axis, where (x – 2)2 = – (0 – 5)

̃ x = 2 ± 5\sqrt { 5 }

̃ x = 2 + 5\sqrt { 5 }, x =2 – 5\sqrt { 5 } < 0

The line y = mx divides the shaded area ODEBCO bounded by x = 0, y = 0, x = 3/2 and parabola into two equal parts ODEO and OEBCO.

\ Area ODEBCO = 2. Area ODE.

03/2(1+4xx2)dx=2\int _ { 0 } ^ { 3 / 2 } \left( 1 + 4 x - x ^ { 2 } \right) d x = 2 03/2mxdx\int _ { 0 } ^ { 3 / 2 } m x d x

̃ 32\frac { 3 } { 2 }+ 2(32)2\left( \frac { 3 } { 2 } \right) ^ { 2 }13\frac { 1 } { 3 } (32)3\left( \frac { 3 } { 2 } \right) ^ { 3 } = m(32)2\left( \frac { 3 } { 2 } \right) ^ { 2 }

̃ m =136\frac { 13 } { 6 }