Solveeit Logo

Question

Question: The line y = 2t<sup>2</sup> meets the ellipse \(\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1\) in real poin...

The line y = 2t2 meets the ellipse x29+y24=1\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1 in real points if

A

|t| ≤ 1

B

|t| > 1

C

|t| < 3

D

None of these

Answer

|t| ≤ 1

Explanation

Solution

Putting y = 2t2 in the equation of the given ellipse x29+y24=1\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1,

we get x29+4t44\frac{x^{2}}{9} + \frac{4t^{4}}{4} = 1 ⇒ x2 = 9 (1 - t4) = 9 (1 - t2) (1 + t2).

This will give real value of x if 1 - t2 ≥ 0 i.e. |t| ≤ 1.