Solveeit Logo

Question

Question: The line x + y = a meets the x-axis of A and y-axis at B. A triangle AMN is inscribed in the triangl...

The line x + y = a meets the x-axis of A and y-axis at B. A triangle AMN is inscribed in the triangle OAB, O being the origin, with right angle at N ; M and N lie respectively on OB and AB. If area of DAMN is 38\frac { 3 } { 8 } of the area of DOAB, then ANBN\frac { \mathrm { AN } } { \mathrm { BN } } is equal to-

A

3

B

13\frac { 1 } { 3 }

C

3 or 13\frac { 1 } { 3 }

D

23\frac { 2 } { 3 }

Answer

3

Explanation

Solution

Let = l, Then N ŗ (a1+λ,λa1+λ)\left( \frac { \mathrm { a } } { 1 + \lambda } , \frac { \lambda \mathrm { a } } { 1 + \lambda } \right)

Slope of MN is 1, so, equation of MN is

y –λa1+λ\frac { \lambda \mathrm { a } } { 1 + \lambda } = x – … (i)

Hence, M is

Area of D AMN = 12\frac { 1 } { 2 }AN × MN

= 12\frac { 1 } { 2 }=

Area of D OAB = 12\frac { 1 } { 2 }a2 . According to given condition

12\frac { 1 } { 2 } a2 Ž 3x2 – 10l + 3 = 0

Ž l = 3, 13\frac { 1 } { 3 }.

For l = 13\frac { 1 } { 3 }, M lies outside the segment OB, hence l = 3.