Solveeit Logo

Question

Question: The line x + y = 2 cuts the ellipse 3x<sup>2</sup> + 2y<sup>2</sup> = 6 in A and B. Then the mid poi...

The line x + y = 2 cuts the ellipse 3x2 + 2y2 = 6 in A and B. Then the mid point of AB is

A

(1, 1)

B

(45,65)\left( \frac{4}{5},\frac{6}{5} \right)

C

(65,45)\left( \frac{6}{5},\frac{4}{5} \right)

D

(25,35)\left( \frac{2}{5},\frac{3}{5} \right)

Answer

(45,65)\left( \frac{4}{5},\frac{6}{5} \right)

Explanation

Solution

The mid point of the chord of x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 on the line lx+my+n = 0 is

(a2lna2l2+b2m2,6mub2mna2l2+b2m2)\left( \frac{\mathbf{-}\mathbf{a}^{\mathbf{2}}\mathcal{l}\mathbf{n}}{\mathbf{a}^{\mathbf{2}}\mathcal{l}^{\mathbf{2}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{m}^{\mathbf{2}}}\mathbf{,}\mathbf{\mspace{6mu}}\frac{\mathbf{-}\mathbf{b}^{\mathbf{2}}\mathbf{mn}}{\mathbf{a}^{\mathbf{2}}\mathcal{l}^{\mathbf{2}}\mathbf{+}\mathbf{b}^{\mathbf{2}}\mathbf{m}^{\mathbf{2}}} \right)=

(2x1x22x1+3x1,6mu3x1x22x1+3x1)\left( \frac{\mathbf{-}\mathbf{2x1x}\mathbf{-}\mathbf{2}}{\mathbf{2x1 + 3x1}}\mathbf{,}\mathbf{\mspace{6mu}}\frac{\mathbf{-}\mathbf{3x1x}\mathbf{-}\mathbf{2}}{\mathbf{2x1 + 3x1}} \right) = (4/5, 6/5)