Solveeit Logo

Question

Mathematics Question on Ellipse

The line x=2yx=2 y intersects the ellipse x24+y2=1\frac{x^{2}}{4}+y^{2}=1 at the points PP and QQ. The equation of the circle with PQP Q as diameter is

A

x2+y2=12x^{2}+y^{2}=\frac{1}{2}

B

x2+y2=1x^{2}+y^{2}=1

C

x2+y2=2x^{2}+y^{2}=2

D

x2+y2=52x^{2}+y^{2}=\frac{5}{2}

Answer

x2+y2=52x^{2}+y^{2}=\frac{5}{2}

Explanation

Solution

Solving x=2yx=2 y ...(i)
and x24+y2=1\frac{x^{2}}{4}+y^{2}=1 ...(ii)

Put x=2yx=2 y in E (ii), we get
(2y)24+y2=1\frac{(2 y)^{2}}{4}+y^{2}=1
4y24+y2=1\Rightarrow \frac{4 y^{2}}{4}+y^{2}=1
2y2=1\Rightarrow 2 y^{2}=1
y=±12\Rightarrow y=\pm \frac{1}{\sqrt{2}}
\therefore From E (i), x=±2x=\pm \sqrt{2}
P(2,12)\therefore P\left(\sqrt{2}, \frac{1}{\sqrt{2}}\right)
and Q(2,12)Q\left(-\sqrt{2},-\frac{1}{\sqrt{2}}\right)
\therefore Equation of circle with PQP Q as diameter is
(x2)(x+2)+(y12)(y+12)(x-\sqrt{2})(x+\sqrt{2})+\left(y-\frac{1}{\sqrt{2}}\right)\left(y+\frac{1}{\sqrt{2}}\right)
x22+y212=0\Rightarrow x^{2}-2+y^{2}-\frac{1}{2}=0
x2+y2=52\Rightarrow x^{2}+y^{2}=\frac{5}{2}