Solveeit Logo

Question

Question: The line \(x - y + 2 = 0\) touches the parabola \(y ^ { 2 } = 8 x\) at the point...

The line xy+2=0x - y + 2 = 0 touches the parabola y2=8xy ^ { 2 } = 8 x at the point

A

(2, –4)

B

(1,22)( 1,2 \sqrt { 2 } )

C

(4,42)( 4 , - 4 \sqrt { 2 } )

D

(2, 4)

Answer

(2, 4)

Explanation

Solution

The line xy+2=0x - y + 2 = 0 i.e. x=y2x = y - 2 meets parabola y2=8xy ^ { 2 } = 8 x if

y2=8(y2)=8y16\Rightarrow y ^ { 2 } = 8 ( y - 2 ) = 8 y - 16(y4)2=0( y - 4 ) ^ { 2 } = 0

y=4,4y = 4,4

\bullet \bullet Roots are equal, ∴ Given line touches the given parabola.

x=42=2x = 4 - 2 = 2 , Thus the required point is (2, 4)