Solveeit Logo

Question

Question: The line which is parallel to x–axis and crosses the curve \(y = \sqrt { x }\) at an angle of \(45 ^...

The line which is parallel to x–axis and crosses the curve y=xy = \sqrt { x } at an angle of 4545 ^ { \circ } is equal to.

A

x=14x = \frac { 1 } { 4 }

B

y=14y = \frac { 1 } { 4 }

C

y=12y = \frac { 1 } { 2 }

D

y=1y = 1

Answer

y=12y = \frac { 1 } { 2 }

Explanation

Solution

Let the equation of line parallel to x-axis be

y=λy = \lambda .....(i)

Solving (i) with the cuve y=xy = \sqrt { x } .....(ii)

We get P(λ2,λ)P \left( \lambda ^ { 2 } , \lambda \right) the point of intersection at P

\therefore Slope of (ii) is, m=

\therefore(i) and (ii) intersect at P, at 4545 ^ { \circ }

\therefore tan1(m01+m.0)=±45\tan ^ { - 1 } \left( \frac { m - 0 } { 1 + m .0 } \right) = \pm 45 ^ { \circ } .

m=(12λ)=±1m = \left( \frac { 1 } { 2 \lambda } \right) = \pm 1λ=±12\lambda = \pm \frac { 1 } { 2 }

\therefore The equation of line is y=12y = \frac { 1 } { 2 } or y=12y = \frac { - 1 } { 2 } but y=12y = \frac { - 1 } { 2 } is not given, hence the required line is y=12y = \frac { 1 } { 2 }.