Solveeit Logo

Question

Mathematics Question on Hyperbola

The line segment joining the foci of the hyperbola x2y2+1=0x^2 - y^2 + 1 = 0 is one of the diameters of a circle. The equation of the circle is

A

x2+y2=4x^2 + y^2 = 4

B

x2+y2=2x^{2}+y^{2}=\sqrt{2}

C

x2+y2=2x^2 + y^2 = 2

D

x2+y2=22x^{2}+y^{2}=2\sqrt{2}

Answer

x2+y2=2x^2 + y^2 = 2

Explanation

Solution

Given, equation of hyperbola is
x2y2+1=0x^{2}-y^{2}+1 =0
y2x2=1\Rightarrow y^{2}-x^{2} =1
On comparing it with y2b2x2a2=1\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1, we get
a=b=1a = b = 1
Now, e=1+a2b2=1+11=2e=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{1+\frac{1}{1}}=\sqrt{2}
\therefore Foci =(0,±be)=(0,±2)=(0, \pm b e)=(0, \pm \sqrt{2})
Since, line joining foci of hyperbola is diameter of circle.
\therefore Centre of circle =(0+02,222)=(0,0)=\left(\frac{0+0}{2}, \frac{\sqrt{2}-\sqrt{2}}{2}\right)=(0,0)
and radius =12(00)2+(2(2))2=\frac{1}{2} \sqrt{(0-0)^{2}+(\sqrt{2}-(-\sqrt{2}))^{2}}
=12(22)2=2=\frac{1}{2} \sqrt{(2 \sqrt{2})^{2}}=\sqrt{2}
\therefore Equation of circle will be
(x0)2+(y0)2=(2)2(x-0)^{2}+(y-0)^{2} =(\sqrt{2})^{2}
x2+y2=2\Rightarrow x^{2}+y^{2} =2