Solveeit Logo

Question

Question: The line segment joining \(\left( {2, - 3} \right)\) and \(\left( {5,6} \right)\) is divided by \(x\...

The line segment joining (2,3)\left( {2, - 3} \right) and (5,6)\left( {5,6} \right) is divided by xx axis in the ratio:
A. 2:1
B. 3:1
C. 1:2
D. 1:3

Explanation

Solution

Let the coordinates of the point on xx axis be (h,0)\left( {h,0} \right) where the line segment intersects the xx axis. Let the required ratio be 1:m1:m. Then, use the section formula and the given values to determine the value of mm and hence the required ratio.

Complete step-by-step answer:
We are given that the line segment joins (2,3)\left( {2, - 3} \right) and (5,6)\left( {5,6} \right) which divides the xx axis in certain ratios.
Let the ratio be 1:m1:m
And the coordinates on the xx axis be (h,0)\left( {h,0} \right)


Now, apply the ratio formula on yy coordinate of the given line.
If the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are divided by point (x,y)\left( {x,y} \right) in ratio p:qp:q, then the value of the coordinates (x,y)\left( {x,y} \right) is (x=p(x2)+q(x1)p+q,y=p(y2)+q(y1)p+q)\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right)
Then, from the line AB, we have,
(h=1(5)+m(2)1+m,0=1(6)+m(3)1+m)\left( {h = \dfrac{{1\left( 5 \right) + m\left( { 2} \right)}}{{1 + m}},0 = \dfrac{{1\left( 6 \right) + m\left( { - 3} \right)}}{{1 + m}}} \right)
From the yy coordinate we have,
0=63m1+m 63m=0 3m=6  \Rightarrow 0 = \dfrac{{6 - 3m}}{{1 + m}} \\\ \Rightarrow 6 - 3m = 0 \\\ \Rightarrow 3m = 6 \\\
Divide both equations by 3
\Rightarrow m=2m = 2
Hence, the ratio is 1:2
Thus, option C is correct.
Note: The coordinates on the xx axis is of the form (h,0)\left( {h,0} \right) whereas the coordinates on the yy axis is of the form (0,k)\left( {0,k} \right). Here, we have used the section formula, if the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) are divided by point (x,y)\left( {x,y} \right) in ratio p:qp:q, then the value of the coordinates (x,y)\left( {x,y} \right) is (x=p(x2)+q(x1)p+q,y=p(y2)+q(y1)p+q)\left( {x = \dfrac{{p\left( {{x_2}} \right) + q\left( {{x_1}} \right)}}{{p + q}},y = \dfrac{{p\left( {{y_2}} \right) + q\left( {{y_1}} \right)}}{{p + q}}} \right).