Solveeit Logo

Question

Question: The line parallel to the x-axis and passing through the intersection of the lines \(a x + 2 b y + 3 ...

The line parallel to the x-axis and passing through the intersection of the lines ax+2by+3b=0a x + 2 b y + 3 b = 0 and

bx2ay3a=0b x - 2 a y - 3 a = 0, where (a,b)(0,0)( a , b ) \neq ( 0,0 ) is.

A

Above the x-axis at a distance of 3/2 from it

B

Above the x-axis at a distance of 2/3 from it

C

Below the x-axis at a distance of 3/2 from it

D

Below the x-axis at a distance of 2/3 from it

Answer

Below the x-axis at a distance of 3/2 from it

Explanation

Solution

The lines passing through the intersection of the lines ax+2by+3b=0a x + 2 b y + 3 b = 0 and bx2ay3a=0b x - 2 a y - 3 a = 0 is

ax+2by+3b+λ(bx2ay3a)=0a x + 2 b y + 3 b + \lambda ( b x - 2 a y - 3 a ) = 0

(a+bλ)x\Rightarrow ( a + b \lambda ) x +(2b2aλ)y+3b3λa=0+ ( 2 b - 2 a \lambda ) y + 3 b - 3 \lambda a = 0 …..(i)

Line (i) is parallel to x-axis,

\therefore a+bλ=0λ=ab=0a + b \lambda = 0 \Rightarrow \lambda = \frac { - a } { b } = 0

Put the value of λ\lambda in (i)

ax+2by+3bab(bx2ay3a)=0a x + 2 b y + 3 b - \frac { a } { b } ( b x - 2 a y - 3 a ) = 0

y(2b+2a2b)+3b+3a2b=0y \left( 2 b + \frac { 2 a ^ { 2 } } { b } \right) + 3 b + \frac { 3 a ^ { 2 } } { b } = 0 , y(2b2+2a2b)=(3b2+3a2b)y \left( \frac { 2 b ^ { 2 } + 2 a ^ { 2 } } { b } \right) = - \left( \frac { 3 b ^ { 2 } + 3 a ^ { 2 } } { b } \right)

y=3(a2+b2)2(b2+a2)=32y = \frac { - 3 \left( a ^ { 2 } + b ^ { 2 } \right) } { 2 \left( b ^ { 2 } + a ^ { 2 } \right) } = \frac { - 3 } { 2 }, y=32y = - \frac { 3 } { 2 }

So, it is 3/2 unit below x-axis.