Solveeit Logo

Question

Mathematics Question on distance between two points

The line of the shortest distance between the lines x20=y11=z1\frac{x-2}{0}=\frac{y-1}{1}=\frac{z}{1} and x32=y52=z11\frac{x-3}{2}=\frac{y-5}{2}=\frac{z-1}{1} makes an angle of cos−1⁡227\sqrt{\frac{2}{27}} with the plane P: axyz = 0, (a> 0). If the image of the point (1, 1, –5) in the plane P is (α, β, γ), then α + β – γ is equal to ________.

Answer

The line of shortest distance will be along b1\vec {b_1}×b2\vec{b_2}
Where,
b1\vec {b_1}=j^\hat j+k^\hat k
and
b2\vec {b_2}=2i^\hat i+2j^\hat j+k^\hat k
b1\vec {b_1}×b2\vec {b_2}=i^j^k^ 001 221\begin{vmatrix} \hat i &\hat j &\hat k \\\ 0&0 &1 \\\ 2&2 &1 \end{vmatrix}=−i^\hat i+2j^\hat j−2k^\hat k
Angle between b1\vec {b_1}×b2\vec {b_2} and plane P,
sin⁡θ=|a2+23.a2+2\frac{-a-2+2}{3.\sqrt{a^2+2}}|=527\frac{5}{\sqrt{27}}
aa2+2\frac{|a|}{\sqrt{a^2+2}}=53\frac{5}{\sqrt3}
⇒ a2=-2511\frac{25}{11}(not possible)