Solveeit Logo

Question

Question: The line ![](https://cdn.pureessence.tech/canvas_482.png?top_left_x=690&top_left_y=1183&width=300&he...

The line meets the x-axis at A and y-axis at B and the line y = x at C such that the area of the DAOC is twice the area of DBOC. Then the coordinates of C are

A

(b3,b3)\left( \frac { \mathrm { b } } { 3 } , \frac { \mathrm { b } } { 3 } \right)

B

C

D

None

Answer

Explanation

Solution

Given DAOC = 2 (DBOC)

Ž 12(OA)(x1)=2×12(OB)(x1)\frac { 1 } { 2 } ( \mathrm { OA } ) \left( \mathrm { x } _ { 1 } \right) = \frac { 2 \times 1 } { 2 } ( \mathrm { OB } ) \left( \mathrm { x } _ { 1 } \right)

Ž

Equation of ABxa+yb=1\mathrm { AB } \Rightarrow \frac { \mathrm { x } } { \mathrm { a } } + \frac { \mathrm { y } } { \mathrm { b } } = 1 ……(i)

…. (ii)

Ž Since point C lies on the line (ii)

Ž

Ž

Ž