Solveeit Logo

Question

Question: The line lx + my = 1 intersects the circle x<sup>2</sup> + y<sup>2</sup> = a<sup>2</sup> at points A...

The line lx + my = 1 intersects the circle x2 + y2 = a2 at points A, B, if AB subtends 45° at the origin, then a2 (l2 + m2) -

A

4 ± 22\sqrt{2}

B

4 ±26\sqrt{6}

C

26\sqrt{6}

D

4 – 6\sqrt{6}

Answer

4 ± 22\sqrt{2}

Explanation

Solution

Homogenise the equation of the circle with the help of the equation of the line

x2 + y2 = a2 (1)2 = x2 + y2 = a2 (lx + my)2

 (a2l2 – 1) x2 + 2lma2xy + (a2m2 – 1) y2 = 0

\ tan 450 =2l2m2a4(a2l21)(a2m21)a2l21+a2m21\frac{2\sqrt{l^{2}m^{2}a^{4} - (a^{2}l^{2} - 1)(a^{2}m^{2} - 1)}}{a^{2}l^{2} - 1 + a^{2}m^{2} - 1}

Squaring, we get 1 = 4(a2l2+a2m21)(a2l2+a2m22)2\frac{4(a^{2}l^{2} + a^{2}m^{2} - 1)}{(a^{2}l^{2} + a^{2}m^{2} - 2)^{2}}

 a4 (l2 + m2) – 8a2 (l2 + m2) + 8 = 0

\ l2 + m2 = 8a2±64a432a42a4\frac{8a^{2} \pm \sqrt{64a^{4} - 32a^{4}}}{2a^{4}}

a2 (l2 + m2) = 4 ฑ 22\sqrt{2}.