Question
Question: The line lx + my = 1 intersects the circle x<sup>2</sup> + y<sup>2</sup> = a<sup>2</sup> at points A...
The line lx + my = 1 intersects the circle x2 + y2 = a2 at points A, B, if AB subtends 45° at the origin, then a2 (l2 + m2) -
A
4 ± 22
B
4 ±26
C
26
D
4 – 6
Answer
4 ± 22
Explanation
Solution
Homogenise the equation of the circle with the help of the equation of the line
x2 + y2 = a2 (1)2 = x2 + y2 = a2 (lx + my)2
(a2l2 – 1) x2 + 2lma2xy + (a2m2 – 1) y2 = 0
\ tan 450 =a2l2−1+a2m2−12l2m2a4−(a2l2−1)(a2m2−1)
Squaring, we get 1 = (a2l2+a2m2−2)24(a2l2+a2m2−1)
a4 (l2 + m2) – 8a2 (l2 + m2) + 8 = 0
\ l2 + m2 = 2a48a2±64a4−32a4
a2 (l2 + m2) = 4 ฑ 22.