Solveeit Logo

Question

Question: The line L has intercepts ‘a’ and ‘b’ on the coordinate axes. The coordinate axes are rotated throug...

The line L has intercepts ‘a’ and ‘b’ on the coordinate axes. The coordinate axes are rotated through a fixed angle, keeping the origin fixed. If ‘p’ and ‘q’ are the intercepts of the line L on the new axes, then 1a21p2+1b21q2\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}} is equal to
(a) -1
(b) 0
(c) 1
(d) None of these

Explanation

Solution

First take line as xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1, then if it is rotated by α\alpha angle in anticlockwise direction, then replace x by (xcosαysinα)\left( x\cos \alpha -y\sin \alpha \right) and y by (xsinα+ycosα)\left( x\sin \alpha +y\cos \alpha \right) then put the points (p,0) and (0,q) as they are intercepts to find relation of p and q. Then eliminate α\alpha by using identity sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1 to get the desired result.

Complete step by step answer:
Let α\alpha be the angle by which the line is rotated in anticlockwise direction.
Let the original line be L having the equation,
xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1
So, now rotating by angle α\alpha in anticlockwise direction, we will replace x by (xcosαysinα)\left( x\cos \alpha -y\sin \alpha \right) and y by (xsinα+ycosα)\left( x\sin \alpha +y\cos \alpha \right).
So, the new line L will be,
(xcosαysinα)a+(xsinα+ycosα)b=1\dfrac{\left( x\cos \alpha -y\sin \alpha \right)}{a}+\dfrac{\left( x\sin \alpha +y\cos \alpha \right)}{b}=1
We are given that p, q are x intercept and y intercepts of new line so it should satisfy this equation, i.e., (p,0) and (0,q) respectively, we get
(pcosα0sinα)a+(psinα+0cosα)b=1 p[(cosα)a+(sinα)b]=1 [(cosα)a+(sinα)b]=1p.......(i) \begin{aligned} & \dfrac{\left( p\cos \alpha -0\sin \alpha \right)}{a}+\dfrac{\left( p\sin \alpha +0\cos \alpha \right)}{b}=1 \\\ & \Rightarrow p\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=1 \\\ & \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]=\dfrac{1}{p}.......(i) \\\ \end{aligned}
Similarly,
(0cosαqsinα)a+(0sinα+qcosα)b=1 q[(cosα)b(sinα)a]=1 [(cosα)b(sinα)a]=1q.......(ii) \begin{aligned} & \dfrac{\left( 0\cos \alpha -q\sin \alpha \right)}{a}+\dfrac{\left( 0\sin \alpha +q\cos \alpha \right)}{b}=1 \\\ & \Rightarrow q\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=1 \\\ & \Rightarrow \left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]=\dfrac{1}{q}.......(ii) \\\ \end{aligned}
Now we have to eliminate the terms α\alpha . So, we will square the equation (i) and (ii) separately and add them together.
Squaring equation (i), we get
[(cosα)a+(sinα)b]2=1p2\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{a}+\dfrac{\left( \sin \alpha \right)}{b} \right]}^{2}}=\dfrac{1}{{{p}^{2}}}
Using the formula, (c+d)2=c2+2cd+d{{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d, we get
1p2=1a2cos2α+1b2sin2α+2sinαcosαab..........(iii)\dfrac{1}{{{p}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}..........(iii)
Now squaring equation (ii), we get
[(cosα)b(sinα)a]2=1q2\Rightarrow {{\left[ \dfrac{\left( \cos \alpha \right)}{b}-\dfrac{\left( \sin \alpha \right)}{a} \right]}^{2}}=\dfrac{1}{{{q}^{2}}}
Using the formula, (c+d)2=c2+2cd+d{{\left( c+d \right)}^{2}}={{c}^{2}}+2cd+d, we get
1q2=1a2sin2α+1b2cos2α2sinαcosαab.........(iv)\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}.........(iv)
Now adding equation (iii) and (iv), we get
1p2+1q2=1a2cos2α+1b2sin2α+2sinαcosαab+1a2sin2α+1b2cos2α2sinαcosαab\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{2\sin \alpha \cos \alpha }{ab}+\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha -\dfrac{2\sin \alpha \cos \alpha }{ab}
Cancelling the like terms, we get
1p2+1q2=1a2cos2α+1b2sin2α+1a2sin2α+1b2cos2α\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}{{\cos }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{a}^{2}}}{{\sin }^{2}}\alpha +\dfrac{1}{{{b}^{2}}}{{\cos }^{2}}\alpha
Now grouping and converting we get,
1p2+1q2=1a2(sin2α+cos2α)+1b2(cos2αsin2α)\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}\left( {{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha \right)+\dfrac{1}{{{b}^{2}}}\left( {{\cos }^{2}}\alpha {{\sin }^{2}}\alpha \right)
Now using identify sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1 we get,
1p2+1q2=1a2+1b2\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{q}^{2}}}=\dfrac{1}{{{a}^{2}}}+\dfrac{1}{{{b}^{2}}}
Bringing all the terms on the right hand side, we get
1a21p2+1b21q2=0\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}}=0
So, the value of the given expression 1a21p2+1b21q2\dfrac{1}{{{a}^{2}}}-\dfrac{1}{{{p}^{2}}}+\dfrac{1}{{{b}^{2}}}-\dfrac{1}{{{q}^{2}}} is 0.

Hence the correct answer is option (b).

Note:
Students must be careful while dealing and forming an equation of lines when rotated by any fixed angle. While eliminating also they should be careful about calculation to avoid mistakes.
General mistake that student makes is, after rotating the line they forget to substitute then replace x by (xcosαysinα)\left( x\cos \alpha -y\sin \alpha \right) and y by (xsinα+ycosα)\left( x\sin \alpha +y\cos \alpha \right)
So they won’t obtain the correct answer.