Solveeit Logo

Question

Question: The line \(\frac{x + 3}{3} = \frac{y - 2}{- 2} = \frac{z + 1}{1}\) and the plane \(4x + 5y + 3z - 5...

The line x+33=y22=z+11\frac{x + 3}{3} = \frac{y - 2}{- 2} = \frac{z + 1}{1} and the plane

4x+5y+3z5=04x + 5y + 3z - 5 = 0 intersect at a point

A

(3, 1, –2)

B

(3, – 2, 1)

C

(2, –1, 3)

D

(–1, –2, –3)

Answer

(3, – 2, 1)

Explanation

Solution

Line is x+33=y22=z+11=λ\frac { x + 3 } { 3 } = \frac { y - 2 } { - 2 } = \frac { z + 1 } { 1 } = \lambda (Let)

x=3λ3;y=2λ+2;z=λ1x = 3 \lambda - 3 ; y = - 2 \lambda + 2 ; z = \lambda - 1line intersects plane,

therefore, 4(3λ3)+5(2λ+2)+3(λ1)5=04 ( 3 \lambda - 3 ) + 5 ( - 2 \lambda + 2 ) + 3 ( \lambda - 1 ) - 5 = 0 λ=2\Rightarrow \lambda = 2.

So, x=3;y=2;z=1x = 3 ; y = - 2 ; z = 1.

Trick : Since the point (3, – 2, 1) satisfies both the equations.