Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The line xa+yb=1\frac {x} {a} + \frac {y} {b} =1 touches the curve y=bex/ay = be^{-x/a} at the point

A

(a,ba)( a, \frac {b} {a})

B

(- a, ba)

C

(a,ab)( a, \frac {a} {b})

D

none of these

Answer

none of these

Explanation

Solution

y=bex/ay = be^{-x/a} dydx=baex/a\therefore \frac{dy}{dx} = -\frac{b}{a}e^{-x/a} Since the line xa+yb=1\frac{x}{a}+\frac{y}{b} = 1 touches (1)\left(1\right) 1/a1/b=baex/a\therefore -\frac{1/a}{1/b} = -\frac{b}{a} e^{-x/a} i. e., ba=baex/a- \frac{b}{a}= -\frac{b}{a} e^{-x/a} 1=ex/a\Rightarrow 1= e^{-x/a} xa=0\Rightarrow - \frac{x}{a} = 0 x=0\Rightarrow x = 0 y=be0=0=b\therefore y = be^{0} = 0 = b Hence reqd. point is (0,b)\left(0, b\right)