Solveeit Logo

Question

Question: The line \[\dfrac{x}{a}+\dfrac{y}{b}=1\] meets the axis of x and y at A and B respectively and the l...

The line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1 meets the axis of x and y at A and B respectively and the line y=xy=x at C so that area of the triangle AOC is twice the area of the triangle BOC, O being the origin, then one of the position of C is:
(a) (a,a)\left( a,a \right)
(b) (2a3,2a3)\left( \dfrac{2a}{3},\dfrac{2a}{3} \right)
(c) (b3,b3)\left( \dfrac{b}{3},\dfrac{b}{3} \right)
(d) (2b3,2b3)\left( \dfrac{2b}{3},\dfrac{2b}{3} \right)

Explanation

Solution

Hint: Find the coordinates where the line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1 meets the coordinate axis. Draw a suitable diagram with these points and apply the area condition mentioned in the question. Area of a triangle can be found using 12×base×height\dfrac{1}{2}\times base\times height.

Given that the line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1meets the x axis at A and y axis at B.
Now, for point A:
Let us put y=0y=0, in the line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1
xa+0b=1\dfrac{x}{a}+\dfrac{0}{b}=1
x=ax=a
So, Point A is (a,0)\left( a,0 \right).
For point B:
Let us put x=0x=0in the line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1
0a+yb=1\dfrac{0}{a}+\dfrac{y}{b}=1
y=by=b
So, Point B is (0,b)\left( 0,b \right).
Therefore, we can plot the below diagram with the data we obtained.

Now let us assume point C as (m,m)\left( m,m \right)since it lies on the line x=yx=y.
As mentioned in the question we have:
(Area of AOC\vartriangle AOC) = 2(Area of BOC\vartriangle BOC)
12×(OA)(CD)=2×12(OB)(CE)\dfrac{1}{2}\times \left( OA \right)\left( CD \right)=2\times \dfrac{1}{2}\left( OB \right)\left( CE \right)
Since, area of triangle = 12×base×height\dfrac{1}{2}\times base\times height.
We have:
OA=aOA=a
CD=mCD=m
OB=bOB=b
CE=mCE=m
Substituting the above values in 12(a)(m)=(b)(m)\dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right), we will have:
12(a)(m)=(b)(m)\therefore \dfrac{1}{2}\left( a \right)\left( m \right)=\left( b \right)\left( m \right)
a=2ba=2b
Now let us substitute a=2ba=2b in the line xa+yb=1\dfrac{x}{a}+\dfrac{y}{b}=1
x2a+yb=1...........(1)\dfrac{x}{2a}+\dfrac{y}{b}=1...........(1)
Substituting c(m,m)c\left( m,m \right) in the equation (1), we will have:
m2b+mb=1\dfrac{m}{2b}+\dfrac{m}{b}=1
3m=2b3m=2b
m=2b3m=\dfrac{2b}{3}
Therefore, the coordinates of C can be (2b3,2b3)\left( \dfrac{2b}{3},\dfrac{2b}{3} \right).
Hence option D is the correct answer.

Note: We can also find the are of the triangle using the formula 12x1(y2y3)+x2(y3y1)+x3(y1y2)\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right| when the three vertices of the triangle are known to us . But we adopt the formula of 12×base×height\dfrac{1}{2}\times base\times height to save time.