Solveeit Logo

Question

Mathematics Question on Hyperbola

The line 2x+6y=22x+\sqrt{6y}=2 is a tangent to the curve x22y2=4x^{2}-2y^{2}=4. The point of contact is

A

(4,6)\left(4,-\sqrt{6}\right)

B

(7,26)\left(7,-2\sqrt{6}\right)

C

(2,3)\left(2,3\right)

D

(6,1)\left(\sqrt{6},1\right)

Answer

(4,6)\left(4,-\sqrt{6}\right)

Explanation

Solution

On solving the equation of line and curve, we get,
x^{2}-2\left\\{\frac{2-2 x}{\sqrt{6}}\right\\}^{2}=4
x213×4(1+x22x)=4\Rightarrow x^{2}-\frac{1}{3} \times 4\left(1+x^{2}-2 x\right)=4
3x244x2+8x=12\Rightarrow 3 x^{2}-4-4 x^{2}+8 x=12
x2+8x16=0\Rightarrow -x^{2}+8 x-16=0
x28x+16=0\Rightarrow x^{2}-8 x+16=0
(x4)2=0x=4\Rightarrow (x-4)^{2}=0 \Rightarrow x=4
and 6y=22(4)=6\sqrt{6} \cdot y=2-2(4)=-6
y=6\Rightarrow y=-\sqrt{6}
So, point of contact is (4,6)(4,-\sqrt{6}).