Solveeit Logo

Question

Question: The limiting molar conductivities of the given electrolytes at 298 K follow the order: (\[{\lambda ^...

The limiting molar conductivities of the given electrolytes at 298 K follow the order: (λ(K+)=73.5{\lambda ^ \circ }({K^ + }) = 73.5, λ(Cl)=76.3{\lambda ^ \circ }(C{l^ - }) = 76.3, λ(Ca+2)=119.0{\lambda ^ \circ }(C{a^{ + 2}}) = 119.0, λ(SO42)=160.0Scm2mol1{\lambda ^ \circ }(S{O_4}^{ - 2}) = 160.0Sc{m^2}mo{l^{ - 1}}).
(A) KCl < CaCl2CaC{l_2} < K2SO4{K_2}S{O_4}
(B) KCl < K2SO4{K_2}S{O_4} < CaCl2CaC{l_2}
(C) K2SO4{K_2}S{O_4} < CaCl2CaC{l_2} < KCl
(D) CaCl2CaC{l_2} < K2SO4{K_2}S{O_4} < KCl

Explanation

Solution

Hint : Use the Kohlrausch’s Law and find the molar conductivities of KCl, CaCl2CaC{l_2}and K2SO4{K_2}S{O_4}by adding the conductivities of the ions present in the molecule. Then arrange them in increasing sequence of their conductivities.

Complete step by step solution :
-Kohlrausch’s Law:
λeq=λc+λa\lambda _{eq}^\infty = \lambda _c^\infty + \lambda _a^\infty (1) where, λeq\lambda _{eq}^\infty = equivalent conductivity or limiting molar conductivity of an electrolyte
λc\lambda _c^\infty = equivalence conductivity of cation
λa\lambda _a^\infty = equivalence conductivity of anion
-Here we will be using the Kohlrausch’s Law to find out the limiting molar conductivities of the given electrolytes.
The Kohlrausch’s Law states that the limiting molar conductivity of an electrolyte at infinite dilution is equal to the sum of conductances of the cations and anions.
Mathematically it is written as:
λeq=λc+λa\lambda _{eq}^\infty = \lambda _c^\infty + \lambda _a^\infty (1) where, λeq\lambda _{eq}^\infty = equivalent conductivity or limiting molar conductivity of an electrolyte
λc\lambda _c^\infty = equivalence conductivity of cation
λa\lambda _a^\infty = equivalence conductivity of anion
-So, now we will find the limiting molar conductivity of KCl, CaCl2CaC{l_2}and K2SO4{K_2}S{O_4} using equation (1).

The question gives us the following values: λ(K+)=73.5{\lambda ^ \circ }({K^ + }) = 73.5, λ(Cl)=76.3{\lambda ^ \circ }(C{l^ - }) = 76.3, λ(Ca+2)=119.0{\lambda ^ \circ }(C{a^{ + 2}}) = 119.0, λ(SO42)=160.0Scm2mol1{\lambda ^ \circ }(S{O_4}^{ - 2}) = 160.0Sc{m^2}mo{l^{ - 1}}
Let us begin with KCl: It has 1 K+{K^ + } ion and 1 ClC{l^ - } ion, so its molar conductivity will be written as:

λKCl=λK++λCl\lambda _{KCl}^\infty = \lambda _{{K^ + }}^\infty + \lambda _{C{l^ - }}^\infty
= 73.5 +76.3
= 149.8

Now for CaCl2CaC{l_2}: Since it has 1 Ca+2C{a^{ + 2}} ion and 2 ClC{l^ - } ions, it’s molar conductivity can be written as:
λCaCl2=λCa+2+2λCl\lambda _{CaC{l_2}}^\infty = \lambda _{C{a^{ + 2}}}^\infty + 2\lambda _{C{l^ - }}^\infty
= 119 + 2(76.3)
= 271.6

For K2SO4{K_2}S{O_4}: Since it has 2 K+{K^ + } ions and 1 SO42SO_4^{ - 2} ion, its molar conductivity is written as:
λK2SO4=2λK++λSO42\lambda _{{K_2}S{O_4}}^\infty = 2\lambda _{{K^ + }}^\infty + \lambda _{S{O_4}^{ - 2}}^\infty
= 2(73.5) + 160
= 307
-K2SO4{K_2}S{O_4} has the highest limiting molar conductivity followed by CaCl2CaC{l_2} and then KCl.

So, the correct sequence is: (A) KCl < CaCl2CaC{l_2} < K2SO4{K_2}S{O_4}

Note : While finding out the limiting molar conductivities of the electrolytes add the values of conductivity of cations and anions in their respective stoichiometric coefficients. Example for KCl it is: λKCl=λK++λCl\lambda _{KCl}^\infty = \lambda _{{K^ + }}^\infty + \lambda _{C{l^ - }}^\infty because there is only 1 K+{K^ + } ion and 1 ClC{l^ - } ion, but for CaCl2CaC{l_2} it is: λCaCl2=λCa+2+2λCl\lambda _{CaC{l_2}}^\infty = \lambda _{C{a^{ + 2}}}^\infty + 2\lambda _{C{l^ - }}^\infty because it has 1 Ca+2C{a^{ + 2}} ion and 2 ClC{l^ - } ions.