Solveeit Logo

Question

Mathematics Question on Circle

The lengths of the tangent drawn from any point on the circle 15x2+15y248x+64y=015x^2 +15y^2 - 48x + 64y = 0 to the two circles 5x2+5y224x+32y+75=05x^2 + 5y^2 - 24x + 32y + 75 = 0 and 5x2+5y248x+64y+300=05x^2 + 5y^2 - 48x + 64y + 300 = 0 are in the ratio of

A

1:02

B

2:03

C

3:04

D

None

Answer

1:02

Explanation

Solution

Let P(h,k)P ( h , k ) be a point on the circle 15x2+15y248x+64y=015 x^{2}+15 y^{2}-48 x+64 y=0 Then the lengths of the tangents from P(h,k)P ( h , k ) to 5x2+5y224x+32y+75=05 x ^{2}+5 y ^{2}-24 x +32 y +75=0 5x2+5y248x+64y+300=05 x ^{2}+5 y ^{2}-48 x +64 y +300=0 are PT1=h2+k2245h+325k+15PT _{1}=\sqrt{ h ^{2}+ k ^{2}-\frac{24}{5} h +\frac{32}{5} k +15} and PT2=h2+k2485h+645k+60 PT _{2}=\sqrt{ h ^{2}+ k ^{2}-\frac{48}{5} h +\frac{64}{5} k +60} or PT1=4815h6415k245h+325k+15=3215k2415h+15PT _{1}=\sqrt{\frac{48}{15} h -\frac{64}{15} k -\frac{24}{5} h +\frac{32}{5} k +15}=\sqrt{\frac{32}{15} k -\frac{24}{15} h +15} (Since (h,k)(h, k) lies on 15x215y248x+64y=015x^2-15 y ^{2}-48 x +64 y =0 h2+k24815h+6415k=0)\left.\therefore h ^{2}+ k ^{2}-\frac{48}{15} h +\frac{64}{15} k =0\right) and PT2=4815h645k485h+645k+60PT _{2}=\sqrt{\frac{48}{15} h -\frac{64}{5} k -\frac{48}{5} h +\frac{64}{5} k +60} =9615h+12815k+60=22415h+3215k+15=2PT1=\sqrt{-\frac{96}{15} h +\frac{128}{15} k +60}=2 \sqrt{-\frac{24}{15} h +\frac{32}{15} k +15}=2 PT _{1} PT1:PT2=1:2\Rightarrow PT _{1}: PT _{2}=1: 2