Solveeit Logo

Question

Mathematics Question on Circle

The lengths of the tangent drawn from any point on the circle 15x2+15x248x+64y=015x^2 + 15x^2 - 48x +64y = 0 to the two circles 5x2+5y224x+32y+75=05x^2 + 5y^2 -24x + 32y +75 = 0 and 5x2+5y248x+64y+300=05x^2 + 5y^2 - 48x + 64y +300 = 0 are in the ratio of

A

1:02

B

2:03

C

3:04

D

None of these

Answer

1:02

Explanation

Solution

Let P(h, k) be a point on the circle 15x2+15y248x+64y=015x^2 + 15y^2 -48x + 64y = 0 Then the lengths of the tangents from P(h, k) to 5x2+5y224x+32y+75=05x^2 + 5y^2 -24x + 32y +75 = 0 and 5x2+5y248x+64y+300=05x^2 + 5y^2 - 48x + 64y +300 = 0 are PT1=h2+k2245h+325k+15PT_{1} = \sqrt{h^{2}+k^{2} - \frac{24}{5}h + \frac{32}{5}k +15} and PT2=h2+k2485h+645k+30PT_{2} = \sqrt{h^{2}+k^{2} - \frac{48}{5}h + \frac{64}{5}k +30} or PT1=4815h+6415k245h+325k+15=3215k2415h+15 PT_{1}=\sqrt{\frac{48}{15}h + \frac{64}{15}k-\frac{24}{5}h + \frac{32}{5}k +15} = \sqrt{ \frac{32}{15}k -\frac{24}{15}h +15} Since (h,k)\left(h, k\right) lies on 5x2+5y248x+64y=05x^{2} + 5y^{2} - 48x + 64y = 0 h2+k24815h+6415k=0\therefore h^{2}+k^{2} - \frac{48}{15}h + \frac{64}{15}k = 0 and PT2=4815h6415k485h645k+60PT_{2} = \sqrt{\frac{48}{15}h - \frac{64}{15}k-\frac{48}{5}h - \frac{64}{5}k +60} =9615h+12815k+60=22415h+3215k+15=2PT1= \sqrt{-\frac{96}{15}h+\frac{128}{15}k +60 } = 2\sqrt{-\frac{24}{15}h}+\frac{32}{15}k + 15 = 2PT_{1} PT1:PT2=1:2\Rightarrow PT_{1} : PT_{2} =1 : 2