Solveeit Logo

Question

Mathematics Question on Triangles

The lengths of the sides of a triangle are 10 + x2, 10 + x2 and 20 – 2x2. If for x = k, the area of the triangle is maximum, then 3k2 is equal to :

A

5

B

8

C

10

D

12

Answer

10

Explanation

Solution

Triangle ABC

CD=(10+x2)2(10x2)2CD = \sqrt{(10+x^2)^2-(10-x^2)^2}

= 210x2√10|x|

Area

= 12×CD×AB\frac{1}{2} \times CD \times AB

= 12×210x(202x2)\frac{1}{2} \times 2\sqrt{10}|x| (20-2x^2)

A=10x(10x2)A = \sqrt{10}|x| (10-x^2)

dAdx=10xx(10x2)+10x(2x)=0\frac{dA}{dx} = \sqrt{10}\frac{ |x|}{x} (10-x^2)+ \sqrt{10}|x| (-2x) = 0

10x2=2x2⇒ 10 – x^2 = 2x^2

3x2=103x^2 = 10

x=kx = k

3k2=103k^2 = 10

Hence, the correct option is (C): 1010