Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

The length xx of a rectangle is decreasing at the rate of 5cm/minute5 cm/minute and the width yy is increasing at the rate of 4cm/minute4 cm/minute. When x=8cmx = 8 cm and y=6cmy = 6 cm, find the rates of change of (a)(a) the perimeter, and (b)(b) the area of the rectangle.

Answer

The correct answer is 2cm2/min.2 cm^2/min.
Since the length (x)(x) is decreasing at the rate of 5cm/minute5 cm/minute and the width (y)(y) is increasing at the rate of 4cm/minute4 cm/minute, we have:
dxdt=5cm/min\frac{dx}{dt}=-5cm/min and dydt=4cm/min\frac{dy}{dt}=4 cm/min
(a) The perimeter (P)(P) of a rectangle is given by, P=2(x+y)P = 2(x + y)
dpdt=2(dxdt+dydt)=2(5+4)=2cm/min.∴ \frac{dp}{dt}=2(\frac{dx}{dt}+\frac{dy}{dt})=2(-5+4)=-2 cm/min.
(b) The area (A)(A) of a rectangle is given by, A=x×yA = x \times y
dAdt=dxdt.y+x.dydt=5y+4x∴\frac{dA}{dt}=\frac{dx}{dt}.y+x.\frac{dy}{dt}=-5y+4x
When x=8cmx = 8 cm and y=6cm,dAdt=(5×6+4×8)cm2/min=2cm2/miny = 6 cm, \frac{dA}{dt}=(-5\times6+4\times8)cm^2/min=2cm^2/min
Hence, the area of the rectangle is increasing at the rate of 2cm2/min.2 cm^2/min.