Solveeit Logo

Question

Question: The length of the transverse axis of a hyperbola is \(2\cos \alpha \). The foci of the hyperbola are...

The length of the transverse axis of a hyperbola is 2cosα2\cos \alpha . The foci of the hyperbola are the same as that of the ellipse 9x2+16y2=1449{x^2} + 16{y^2} = 144 , the equation of the hyperbola is
A. x2cos2αy27cos2α=1\dfrac{{{x^2}}}{{{{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 - {{\cos }^2}\alpha }} = 1
B. x2cos2αy27+cos2α=1\dfrac{{{x^2}}}{{{{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 + {{\cos }^2}\alpha }} = 1
C. x21+cos2αy27cos2α=1\dfrac{{{x^2}}}{{1 + {{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 - {{\cos }^2}\alpha }} = 1
D. x21+cos2αy27+cos2α=1\dfrac{{{x^2}}}{{1 + {{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 + {{\cos }^2}\alpha }} = 1
E. x2cos2αy25cos2α=1\dfrac{{{x^2}}}{{{{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{5 - {{\cos }^2}\alpha }} = 1

Explanation

Solution

Hint: First take the equation of hyperbola and solve it step by step adding the values and then substitute the value of a and b in the hyperbola equation and compare with the given option.

Complete step-by-step answer:
Let the equation of the hyperbola be x2a12y2b12=1\dfrac{{{x^2}}}{{a_1^2}} - \dfrac{{{y^2}}}{{b_1^2}} = 1
We know that the length of the transverse axis of hyperbola is 2a12{a_1} .
In the question it is given that the length of the transverse axis of hyperbola is 2cosα2\cos \alpha .
2a1=2cosα a1=cosα  \Rightarrow 2{a_1} = 2\cos \alpha \\\ \Rightarrow {a_1} = \cos \alpha \\\
We know that the focus of hyperbola is a1e1{a_1}{e_1} and the focus of ellipse is aeae.
Then equation of ellipse is 9x2+16y2=1449{x^2} + 16{y^2} = 144
9x2144+16y2144=1 x216+y29=1  \Rightarrow \dfrac{{9{x^2}}}{{144}} + \dfrac{{16{y^2}}}{{144}} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{9} = 1 \\\
General equation of ellipse with origin as centre is,
x2a2+y2b2=1  \Rightarrow \dfrac{{{x^2}}}{{a^2}} + \dfrac{{{y^2}}}{b^2} = 1 \\\
Comparing the above equations, we get, a2=16{a^2} = 16 and b2=9{b^2} = 9.
a=4\therefore a = 4 and b=3b = 3 (as a & b denote lengths, they can’t take negative values)
Now we have to find the eccentricity of ellipse, we know that the formula of eccentricity of ellipse is 1b2a2\sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}}
By putting the value of a and b
e=1916=74e = \sqrt {1 - \dfrac{9}{{16}}} = \dfrac{{\sqrt 7 }}{4}
In the question it is given that the foci of the hyperbola and ellipse are equal so a1e1=ae{a_1}{e_1} = ae
e1cosα=474(a1=cosα) e1cosα=7  \Rightarrow {e_1}\cos \alpha = 4\dfrac{{\sqrt 7 }}{4}\because \left( {{a_1} = \cos \alpha } \right) \\\ \Rightarrow {e_1}\cos \alpha = \sqrt 7 \\\
We know that eccentricity of hyperbola, e1=1+b12a12{e_1} = \sqrt {1 + \dfrac{{b_1^2}}{{a_1^2}}}
Substituting, we get,
cosα1+b12cos2α=7 cosαcosαcos2α+b12=7  \Rightarrow \cos \alpha \sqrt {1 + \dfrac{{b_1^2}}{{{{\cos }^2}\alpha }}} = \sqrt 7 \\\ \Rightarrow \dfrac{{\cos \alpha }}{{\cos \alpha }}\sqrt {{{\cos }^2}\alpha + b_1^2} = \sqrt 7 \\\
Squaring both the sides, we get
cos2α+b12=7 b12=7cos2α  \Rightarrow {\cos ^2}\alpha + b_1^2 = 7 \\\ \Rightarrow b_1^2 = 7 - {\cos ^2}\alpha \\\
Now put the value of a1{a_1} and b1{b_1} in equation of hyperbola,
x2cos2αy27cos2α=1\dfrac{{{x^2}}}{{{{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 - {{\cos }^2}\alpha }} = 1
Therefore the required solution of hyperbola is x2cos2αy27cos2α=1\dfrac{{{x^2}}}{{{{\cos }^2}\alpha }} - \dfrac{{{y^2}}}{{7 - {{\cos }^2}\alpha }} = 1, so the correct answer is option A.

Note: In this type of equation first assume the equation of hyperbola and ellipse, then using the necessary formulas of eccentricities and the given conditions in the problem statements, determine the values of the constants.