Solveeit Logo

Question

Mathematics Question on Hyperbola

The length of the transverse axis of a hyperbola is 2cosα2 \,\cos \,\alpha . The foci of the hyperbola are the same as that of the ellipse 9x2+16y2=1449x^{2}+16y^{2}=144 . The equation of the hyperbola is

A

x2cos2αy27cos2α=1\frac{x^{2}}{\cos^{2}\alpha}-\frac{y^{2}}{7-\cos^{2} \alpha}=1

B

x2cos2αy27+cos2α=1\frac{x^{2}}{\cos^{2}\alpha}-\frac{y^{2}}{7+\cos^{2} \alpha}=1

C

x21+cos2αy27cos2α=1\frac{x^{2}}{1+\cos^{2}\alpha}-\frac{y^{2}}{7-\cos^{2} \alpha}=1

D

x21+cos2αy27+cos2α=1\frac{x^{2}}{1+\cos^{2}\alpha}-\frac{y^{2}}{7+\cos^{2} \alpha}=1

Answer

x2cos2αy27cos2α=1\frac{x^{2}}{\cos^{2}\alpha}-\frac{y^{2}}{7-\cos^{2} \alpha}=1

Explanation

Solution

Let equation of hyperbola is
x2a12y2b12=1\frac{x^{2}}{a_{1}^{2}}-\frac{y^{2}}{b_{1}^{2}} =1
Given, 2a1=2cosα2 a_{1}=2 \cos \alpha
a1=cosα\Rightarrow a_{1}=\cos \alpha
Also, given equation of ellipse is
Here,x216+y29=1\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
e=1b2a2=1916=74e =\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4}
According to the given condition, Foci of hyperbola (e1)=\left(e_{1}\right)= Foci of ellipse (e)(e)
±a1e1=±ae\Rightarrow \pm a_{1} e_{1}=\pm a e
cosαe1=474\Rightarrow \cos \alpha \cdot e_{1}=4 \cdot \frac{\sqrt{7}}{4}
cosαe1=7\Rightarrow \cos \alpha \cdot e_{1}=\sqrt{7}
cosα1+b12cos2α=7\Rightarrow \cos \alpha \sqrt{1+\frac{b_{1}^{2}}{\cos ^{2} \alpha}}=\sqrt{7}
cos2α+b12=7\Rightarrow \cos ^{2} \alpha+b_{1}^{2}=7
b12=7cos2α\Rightarrow b_{1}^{2}=7-\cos ^{2} \alpha
\therefore The equation of hyperbola is
x2cos2αy27cos2α=1\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{7-\cos ^{2} \alpha}=1