Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The length of the subtangent to the curve x2+xy+y2=7x^2 + xy + y^2 = 7 at (1,3) (1, - 3) is

A

3

B

5

C

15

D

35\frac {3} {5}

Answer

15

Explanation

Solution

x2+xy+y2=7x^{2}+xy+y^{2}=7 2x+xdydx+y1+2ydydx=0\Rightarrow 2x + x \frac{dy}{dx}+y\cdot1+2y \frac{dy}{dx}=0 (x+2y)dydx=(2x+y)\Rightarrow \left(x + 2y\right) \frac{dy}{dx} = -\left(2x+y\right) dydx=2x+yx+2y\Rightarrow \frac{dy}{dx} = -\frac{2x+y}{x+2y} At (1.3)dydx=2316=15\left(1.3\right) \frac{dy}{dx} =- \frac{2-3}{1-6} = -\frac{1}{5} Length of the subtangent =ydydx=315=15= \frac{y}{\frac{dy}{dx}}=\frac{3}{-\frac{1}{5}} = 15