Solveeit Logo

Question

Mathematics Question on Hyperbola

The length of the straight line x3y=1x - 3y = 1 intercepted by the hyperbola x24y2=1x^2 - 4y^2 = 1 is

A

10\sqrt{10}

B

65\frac{6}{5}

C

110\frac{1}{\sqrt{10}}

D

6510\frac{6}{5} \sqrt{10}

Answer

6510\frac{6}{5} \sqrt{10}

Explanation

Solution

Given : equation of line, x3y=1x - 3y = 1 (1)
and hyperbola x24y2=1x^2 - 4y^2 = 1 (2)
putting x=1+3yx = 1 + 3y in equation (2), we get
(1+3y)24y2=1    1+9y2+6y4y2=1(1 + 3y)^2 - 4y^2 = 1 \; \Rightarrow \; 1+ 9y^2 + 6y - 4y^2 = 1
  5y2+6y=0    y(5y+6)=0\Rightarrow \; 5y^2 + 6y = 0 \; \Rightarrow \; y(5y + 6) = 0
\Rightarrow y = 0 or y = 65 - \frac{6}{5}
\therefore x = 1 for y = 0 & x = 1 - 185=135\frac{18}{5} = \frac{-13}{5}
for y = -6/5 \therefore the line (1) cuts the hyperbola (2) in at most two point.
\therefore co-ordinates of points are P(1,0) & Q(135,65)Q \left( - \frac{13}{5} , - \frac{6}{5} \right)
  PQ=(1+135)2+(0+65)2\therefore \; PQ = \sqrt{ \left(1+ \frac{13}{5}\right)^{2} +\left(0+\frac{6}{5}\right)^{2}}
=(185)2+3625=324+3625=36025= \sqrt{\left(\frac{18}{5}\right)^{2} +\frac{36}{25}} = \sqrt{\frac{324 +36}{25}} = \sqrt{\frac{360}{25}}
\therefore length of straight line PQ=6105PQ = \frac{6\sqrt{10}}{5} units.