Solveeit Logo

Question

Mathematics Question on Plane

The length of the projection of the line segment joining the points (5,1,4) (5, -1, 4) and (4,1,3)(4, -1, 3) on the plane, x+y+z=7x + y + z = 7 is:

A

23\frac{2 }{\sqrt{3}}

B

23\frac{2 }{3}

C

13\frac{1}{3}

D

23\sqrt{\frac{2 }{3}}

Answer

23\sqrt{\frac{2 }{3}}

Explanation

Solution

Normal to the plane x+y+z=7x+y+z=7 is n=i^+j^+k^\vec{n}=\hat{i}+\hat{j}+\hat{k} AB=i^k^AB=AB=2\overrightarrow{A B}=-\hat{i}-\hat{k} \Rightarrow|\overrightarrow{A B}|=A B=\sqrt{2} BC= Length of projection of AB on n=ABn^B C=\text { Length of projection of } \overrightarrow{A B} \text { on } \vec{n}=|\overrightarrow{A B} \cdot \hat{n}| =(i^k^)(i^+j^+k^)3=23=\left|(-\hat{i}-\hat{k}) \cdot \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}\right|=\frac{2}{\sqrt{3}} Length of projection of the line segment on the plane is ACA C AC2=AB2BC2=243=23A C^{2}=A B^{2}-B C^{2}=2-\frac{4}{3}=\frac{2}{3} AC2=23A C^{2}=\sqrt{\frac{2}{3}}