Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The length of the perpendicular from the point (1, –2, 5) on the line passing through (1, 2, 4) and parallel to the line x + y – z = 0 = x – 2y + 3z – 5 is

A

212\sqrt{\frac{21}{2}}

B

92\sqrt{\frac{9}{2}}

C

732\sqrt{\frac{73}{2}}

D

1

Answer

212\sqrt{\frac{21}{2}}

Explanation

Solution

Fig.

The line x + y – z = 0 = x – 2y + 3z – 5 is parallel to the vector
b=i^j^k^ 111 123=(1,4,3)\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 1 & 1 & -1 \\\ 1 & -2& 3 \end{vmatrix} = (1, 4, -3)
Equation of line through P(1, 2, 4) and parallel to
x11=y24=z43\frac{x−1}{1}=\frac{y−2}{−4}=\frac{z−4}{−3}
Let N(λ+1,4λ+2,3λ+4)Let\ N ≡ (λ+1,−4λ+2,−3λ+4)
QN=(λ,4λ+4,3λ1)\stackrel{→}{QN}=(λ,−4λ+4,−3λ–1)
QNis perpendicular to b\stackrel{→}{QN} is\ perpendicular\ to\ \vec{b}
⇒ (λ,−4λ+4,−3λ–1)⋅(1,4,−3)=0
λ=12⇒λ=\frac{1}{2}
Hence QN=(12,2,52)\stackrel{→}{QN}=(\frac{1}{2},2,\frac{−5}{2})
and QN=212|\stackrel{→}{QN}|=\sqrt{\frac{21}{2}}
So, the correct option is (A):212\sqrt{\frac{21}{2}}