Solveeit Logo

Question

Question: The length of the perpendicular from the point (0, 2, 3) on the line $\frac{x+3}{5} = \frac{y-1}{2} ...

The length of the perpendicular from the point (0, 2, 3) on the line x+35=y12=\frac{x+3}{5} = \frac{y-1}{2} = The equ

A

5930\sqrt{\frac{59}{30}}

Answer

5930\sqrt{\frac{59}{30}}

Explanation

Solution

We assume that the full equation of the line is

x+35=y12=z11,\frac{x+3}{5}=\frac{y-1}{2}=\frac{z-1}{1}\,,

so that a point on the line is

Q(3,1,1)Q(-3,\,1,\,1)

and its direction vector is

d=(5,2,1).\vec{d}=(5,\,2,\,1)\,.

Let the given point be

P(0,2,3).P(0,\,2,\,3)\,.

Then the vector from QQ to PP is

QP=PQ=(0(3),21,31)=(3,1,2).\vec{QP}=P-Q=(0-(-3),\,2-1,\,3-1)=(3,\,1,\,2)\,.

The formula for the distance from a point to a line in 3D is

Distance=QP×dd.\text{Distance} = \frac{\|\vec{QP}\times\vec{d}\|}{\|\vec{d}\|}\,.

First, compute the cross product:

QP×d=ijk312521=(1122,  2531,  3215)=(3,  7,  1).\vec{QP}\times\vec{d}= \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\[4mm] 3&1&2\\[2mm] 5&2&1 \end{vmatrix} =\Bigl(1\cdot1-2\cdot2,\; 2\cdot5-3\cdot1,\; 3\cdot2-1\cdot5\Bigr) =(-3,\;7,\;1)\,.

Its magnitude is

QP×d=(3)2+72+12=9+49+1=59.\|\vec{QP}\times\vec{d}\|=\sqrt{(-3)^2+7^2+1^2}=\sqrt{9+49+1}=\sqrt{59}\,.

Next, compute the magnitude of d\vec{d}:

d=52+22+12=25+4+1=30.\|\vec{d}\|=\sqrt{5^2+2^2+1^2}=\sqrt{25+4+1}=\sqrt{30}\,.

Thus, the perpendicular distance is

Distance=5930=5930.\text{Distance}=\frac{\sqrt{59}}{\sqrt{30}}=\sqrt{\frac{59}{30}}\,.