Solveeit Logo

Question

Question: The length of the perpendicular from the origin to line <img src="https://cdn.pureessence.tech/canva...

The length of the perpendicular from the origin to line is

A

252 \sqrt { 5 }

B

2

C

525 \sqrt { 2 }

D

6

Answer

6

Explanation

Solution

=4i+2j+4k(12+82050)(3i+4j5k)= 4 \mathrm { i } + 2 \mathrm { j } + 4 \mathrm { k } - \left( \frac { 12 + 8 - 20 } { 50 } \right) \cdot ( 3 \mathrm { i } + 4 \mathrm { j } - 5 \mathrm { k } )

PL=4i+2j+4k\overrightarrow { \mathrm { PL } } = 4 \mathrm { i } + 2 \mathrm { j } + 4 \mathrm { k }

The length of PL is magnitude of PL\overrightarrow { P L } i.e.,

Length of perpendicular =PL=16+4+16=6= | \overrightarrow { P L } | = \sqrt { 16 + 4 + 16 } = 6.