Solveeit Logo

Question

Question: The length of the perpendicular from the origin to the plane passing through three non-collinear poi...

The length of the perpendicular from the origin to the plane passing through three non-collinear points a,b,c\mathbf{a},\mathbf{b},\mathbf{c} is

A

[abc]a×b+c×a+b×c\frac{\lbrack\mathbf{abc}\rbrack}{|\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}|}

B

2[abc]a×b+b×c+c×a\frac{2\lbrack\mathbf{abc}\rbrack}{|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}|}

C

[abc]\lbrack\mathbf{abc}\rbrack

D

None of these

Answer

[abc]a×b+c×a+b×c\frac{\lbrack\mathbf{abc}\rbrack}{|\mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}|}

Explanation

Solution

The vector equation of the plane passing through points a,b,c\mathbf{a},\mathbf{b},\mathbf{c} is r.(a×b+b×c+c×a)=[a6mub6muc]\mathbf{r}.(\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}) = \lbrack\mathbf{a}\mspace{6mu}\mathbf{b}\mspace{6mu}\mathbf{c}\rbrack

Therefore, the length of the perpendicular from the origin to this plane is given by [abc]a×b+b×c+c×a\frac{\lbrack\mathbf{abc}\rbrack}{|\mathbf{a} \times \mathbf{b} + \mathbf{b} \times \mathbf{c} + \mathbf{c} \times \mathbf{a}|}.