Solveeit Logo

Question

Mathematics Question on Plane

The length of the perpendicular drawn from the point (3, -1, 11) to the line x2=y23=z34\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4} is :

A

29\sqrt{29}

B

33\sqrt{33}

C

53\sqrt{53}

D

66\sqrt{66}

Answer

53\sqrt{53}

Explanation

Solution

Let feet of perpendicular is (2α,3α+2,4α+3)(2 \alpha ,3 \alpha + 2, 4 \alpha + 3) \Rightarrow Direction ratio of the \bot line is 2α3,3α+3,4α82 \alpha - 3,3 \alpha + 3,4 \alpha - 8. and Direction ratio of the line 2, 3, 4 are 2(2α3)+3(3α+3)+4(4α8)=0\Rightarrow \, 2(2 \alpha -3)+3(3 \alpha + 3)+4(4 \alpha - 8)=0 29α29=0\Rightarrow \, 29 \alpha - 29 = 0 α=1\Rightarrow \, \alpha = 1 \Rightarrow Feet of \bot is (2, 5, 7) \Rightarrow Length \bot is 12+62+42=53\sqrt{1^2 + 6^2 + 4^2} = \sqrt{53}