Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The length of the perpendicular distance of the point (1,4,0)(-1,\,4,\,0) from the line x1=y3=z1\frac{x}{1}=\frac{y}{3}=\frac{z}{1} is equal to

A

6\sqrt{6}

B

5\sqrt{5}

C

22

D

11

Answer

6\sqrt{6}

Explanation

Solution

Let L be the foot of the perpendicular drawn from the point
P(1,4,0)P(-1,4,0) to the given line.
The coordinated of a general point on x01=y03=z01\frac{x-0}{1}=\frac{y-0}{3}=\frac{z-0}{1} are given by
x1=y3=z1=r\frac{x}{1}=\frac{y}{3}=\frac{z}{1}=r
i.e., x=r,y=3r,z=rx=r,\,\,y=3r,\,\,z=r
Let the coordinate of L be (r,3r,r)(r,\,3r,r) .. (i)
Direction ratios of PL are =r+1,3r4,r=r+1,\,3r-4,\,r
Direction ratios of the given line are 1,3,11,\,\,3,\,\,1
Since, PL perpendicular to the given, line,
\therefore (r+1)+(3r4).2+r.1=0(r+1)+(3r-4).2+r.1=0
\Rightarrow r+1.1+(3r4).2+r.1=0r+1.1+(3r-4).2+r.1=0
\Rightarrow 11r=1111r=11
\Rightarrow r=1r=1
So, the coordinate of L is
(1,3,1)(1,3,1)
\therefore PL=(1+1)2+(34)2+(10)2PL=\sqrt{{{(1+1)}^{2}}+{{(3-4)}^{2}}+{{(1-0)}^{2}}}
=4+1+1=6=\sqrt{4+1+1}=\sqrt{6}