Solveeit Logo

Question

Mathematics Question on Parabola

The length of the parabola y2^2 = 12x cut off by the latus-rectum is

A

6(2+log(1+2))6\left(\sqrt{2}+log\left(1+\sqrt{2}\right)\right)

B

3(2+log(1+2))3\left(\sqrt{2}+log\left(1+\sqrt{2}\right)\right)

C

6(2log(1+2))6\left(\sqrt{2}-log\left(1+\sqrt{2}\right)\right)

D

3(2log(1+2))3\left(\sqrt{2}-log\left(1+\sqrt{2}\right)\right)

Answer

6(2+log(1+2))6\left(\sqrt{2}+log\left(1+\sqrt{2}\right)\right)

Explanation

Solution

On comparing the equation of the parabola
y2^2 = 12 x with the standard equation,
y2^2 = 4 ax, we get 4 a = 12 or a = 3.
Hence, the focus, point C will be at (3, 0) and the extremities of the latus-rectum AB will be at (a, 2a) and (a, -2a). So the coordinates of A and B are (3, 6) and (3, -6) respectively. Now we need to find the length ( curve AOB) of the parabola. As it is not a straight line so we cannot directly find the length of this curve as we cannot directly apply Pythagorous theorem. Let us consider a small length ds on the parabola. Using pythagorous theorem for this length,
ds=(dx)2+(dy)2=(dxdy)2+1dyds=\sqrt{\left(dx\right)^{2} +\left(dy\right)^{2}}=\sqrt{\left(\frac{dx}{dy}\right)^{2} +1 dy}
s=66[(dxdy)2+1].dy...(1)\Rightarrow s = \int^{6}_{ -6}\left[\sqrt{\left(\frac{dx}{dy}\right)^{2} +1}\right].dy \quad\quad\quad...\left(1\right)
From y2=12xx=y212dxdy=2y12=y6y^{2} = 12 x \Rightarrow x=\frac{y^{2}}{12} \frac{dx}{dy}=\frac{2y}{12}=\frac{y}{6}\quad Putting in (1)\left(1\right),
s=66[(y6)2+1]dy=206y2+3636dys=\int^{6}_{-6}\left[\sqrt{\left(\frac{y}{6}\right)^{2}}+1\right]dy =2\int^{6}_{0}\sqrt{\frac{y^{2} +36}{36}dy}
=2606y2+62dy=\frac{2}{6}\int^{6}_{0}\sqrt{y^{2}+6^{2}}dy
Using x2+a2=x2a2+x2\int \sqrt{x^{2}+a^{2}}=\frac{x}{2}\sqrt{a^{2}+x^{2}}
+a22log(x+a2+x2)+C+\frac{a^{2}}{2}log\left(x+\sqrt{a^{2}+x^{2}}\right)+C
We get s=13[y262+y2+622log(y+62+y2)+C]06=\frac{1}{3}\left[\frac{y}{2}\sqrt{6^{2}+y^{2}}+\frac{6^{2}}{2}log\left(y+\sqrt{6^{2}+y^{2}}\right)+C\right]^{^6}_{_{_0}}
=13[6262+62+18log(6+62+62)+C018log(0+62+0)C]=\frac{1}{3}\left[\frac{6}{2}\sqrt{6^{2}+6^{2}}+18 log \left(6+\sqrt{6^{2}+6^{2}}\right)+C-0-18 log \left(0+\sqrt{6^{2}+0}\right)-C\right]
=13[3.62+18log(6+62)18log6]=\frac{1}{3}\left[3.6\sqrt{2}+18log\left(6+6\sqrt{2}\right)-18log 6\right]
=62+6log6(1+2)6=6\sqrt{2}+6log\frac{6\left(1+\sqrt{2}\right)}{6}
=6[(2+log(1+2))]=6\left[\left(\sqrt{2}+log\left(1+\sqrt{2}\right)\right)\right]