Solveeit Logo

Question

Question: The length of the normal (terminated by the major axis) at a point of the ellipse \(\frac{x^{2}}{a^{...

The length of the normal (terminated by the major axis) at a point of the ellipse x2a2\frac{x^{2}}{a^{2}}+y2b2\frac{y^{2}}{b^{2}}=1 is-

A

rr1\sqrt{rr_{1}}

B

ba\frac{b}{a} (r + r1)

C

ba\frac{b}{a}|r– r1|

D

Independent of r, r1, where r, r1 are the focal distance of the point

Answer

rr1\sqrt{rr_{1}}

Explanation

Solution

Let P є (a cos q, b sin q) be point on ellipse

equation of normal at P axcosθ\frac{ax}{\cos\theta}bysinθ\frac{by}{\sin\theta}= a2 – b2

it meets major axis at Q

Q є(a2b2acosθ,0)\left( \frac{a^{2} - b^{2}}{a}\cos\theta,0 \right)

So PQ = (aa2b2acosθ)2+b2sin2θ\sqrt{\left( a - \frac{a^{2} - b^{2}}{a}\cos\theta \right)^{2} + b^{2}\sin^{2}\theta}

= a2sin2θ+b2cos2θ\sqrt{a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta}

= PS = a – ae cos q = r

and PSў = a + ae cos q = r1

rr1 = a2 (1 – e2 cos2q)

= a2 – (a2 – b2) cos2 q

= a2 sin2 q + b2 cos2 q

Length of normal l (PQ) = rr1\sqrt{rr_{1}}