Solveeit Logo

Question

Question: The length of the latus-rectum of the parabola, whose focus is \(\left( \frac{u^{2}}{2g}\sin 2\alpha...

The length of the latus-rectum of the parabola, whose focus is (u22gsin2α,u22gcos2α)\left( \frac{u^{2}}{2g}\sin 2\alpha,\frac{u^{2}}{2g}\cos 2\alpha \right) and directrix is y = u22g\frac{u^{2}}{2g}, is

A

u2gcos2α\frac{u^{2}}{g}\cos^{2}\alpha

B

u2gcos2α\frac{u^{2}}{g}\cos 2\alpha

C

2u2gcos2α\frac{2u^{2}}{g}\cos 2\alpha

D

2u2gsin2α\frac{2u^{2}}{g}\sin^{2}\alpha

Answer

2u2gsin2α\frac{2u^{2}}{g}\sin^{2}\alpha

Explanation

Solution

Perpendicular distance from the focus

(u22gsin2α,u22gcos2α)\left( \frac{u^{2}}{2g}\sin 2\alpha,\frac{u^{2}}{2g}\cos 2\alpha \right)to the directrix y = u22g\frac{u^{2}}{2g} is u22g\frac{u^{2}}{2g} - u22gcos2α\frac{u^{2}}{2g}\cos 2\alpha = u2g\frac{u^{2}}{g}sin2α . ⇒ the latus rectum = 2u2g\frac{2u^{2}}{g}sin2α .