Solveeit Logo

Question

Question: The length of the latus-rectum of the parabola whose focus is \(\left( \frac{u^{2}}{2g}\sin 2\alpha,...

The length of the latus-rectum of the parabola whose focus is (u22gsin2α,6muu22gcos2α)\left( \frac{u^{2}}{2g}\sin 2\alpha,\mspace{6mu} - \frac{u^{2}}{2g}\cos 2\alpha \right) and directrix is y = u22g\frac{u^{2}}{2g} is

A

u2gcos2α\frac{u^{2}}{g}\cos^{2}\alpha

B

u2gcos2α\frac{u^{2}}{g}\cos 2\alpha

C

2u2gcos22α\frac{2u^{2}}{g}\cos^{2}2\alpha

D

2u2gcos2α\frac{2u^{2}}{g}\cos^{2}\alpha

Answer

2u2gcos2α\frac{2u^{2}}{g}\cos^{2}\alpha

Explanation

Solution

According to the figure, the length of latus rectum is 2(SM) = 2 x u22g(1+cos2α)6mu=6mu2u2cos2αg\frac{u^{2}}{2g}(1 + \cos 2\alpha)\mspace{6mu} = \mspace{6mu}\frac{2u^{2}\cos^{2}\alpha}{g}