Solveeit Logo

Question

Mathematics Question on Parabola

The length of the latus rectum of the parabola bx24ay+dx+e=0bx^2 - 4ay + dx + e = 0 is

A

ab\frac{a}{b}

B

4a4a

C

4ba\frac{4b}{a}

D

4ab\frac{4a}{b}

Answer

4ab\frac{4a}{b}

Explanation

Solution

bx24ay+dx+e=0bx^2 - 4ay + dx + e = 0
x2+dxb+d24b2d24b2=4aybeb\Rightarrow x^{2} +\frac{dx}{b} + \frac{d^{2}}{4b^{2}} - \frac{d^{2}}{4b^{2}} = \frac{4ay}{b} - \frac{e}{b}
(x+d2b)2=4ayb+d24b2eb\Rightarrow \left(x+ \frac{d}{2b}\right)^{2} = \frac{4ay}{b} + \frac{d^{2}}{4b^{2}} - \frac{e}{b}
=4ab[y+d216abe4a]= \frac{4a}{b} \left[y + \frac{d^{2}}{16 \,ab} - \frac{e}{4a}\right]
On comparing with general equation of parabola (X+x)2=4a(Y+y)(X + x)^2 = 4a(Y + y), we have
Length of latus rectum =4ab= \frac{4a}{b}