Solveeit Logo

Question

Mathematics Question on Parabola

The length of the latus rectum of the parabola 169[(x1)2+(y3)2]=(5x12y+17)2169\left[(x-1)^{2}+(y-3)^{2}\right]=(5 x-12 y+ 17) ^{2} is:

A

1413\frac{14}{13}

B

1213\frac{12}{13}

C

2813\frac{28}{13}

D

None of these

Answer

2813\frac{28}{13}

Explanation

Solution

Given equation can be rewritten as
(x1)2+(y3)2=(5x12y+1713)2(x-1)^{2}+(y-3)^{2}=\left(\frac{5 x-12 y+17}{13}\right)^{2}
SP=PM\Rightarrow \quad S P=P M
Here, focus is (1,3)(1,3), directrix
5x12y+17=05 x-12 y+17=0
\therefore the distance of the focus from the directrix
=536+1725+144=\left|\frac{5-36+17}{\sqrt{25+144}}\right|
=1413=2a=\frac{14}{13}=2 a
\therefore Latusrectum =2×1413=2813=2 \times \frac{14}{13}=\frac{28}{13}