Solveeit Logo

Question

Question: The length of the latus rectum of an ellipse is \(\frac{1}{3}\)of the major axis. Its eccentricity i...

The length of the latus rectum of an ellipse is 13\frac{1}{3}of the major axis. Its eccentricity is

A

23\frac{2}{3}

B

23\sqrt{\frac{2}{3}}

C

5×4×373\frac{5 \times 4 \times 3}{7^{3}}

D

(34)4\left( \frac{3}{4} \right)^{4}

Answer

23\sqrt{\frac{2}{3}}

Explanation

Solution

2b2a\frac{2b^{2}}{a}= 13\frac{1}{3} (2a)

̃ 3b2 = a2 ̃ 3a2 (1 – e2) = a2

̃ 1 – e2 =13\frac{1}{3}̃ e2 =23\frac{2}{3}̃ e = 23\sqrt{\frac{2}{3}}