Solveeit Logo

Question

Question: The length of the focal chord of a parabola which is inclined at 30<sup>0</sup> is-...

The length of the focal chord of a parabola which is inclined at 300 is-

A

8a

B

12a

C

16a

D

83\sqrt{3}a

Answer

16a

Explanation

Solution

Let parabola is y2 = 4ax

Q PQ is a focal chord

Q slope of PQ

̃ (2at2at)(at2at2)\frac{\left( - \frac{2a}{t} - 2at \right)}{\left( \frac{a}{t^{2}} - at^{2} \right)} = tan 300

̃ 2a(1t+t)a(1t+t)(1tt)\frac{- 2a\left( \frac{1}{t} + t \right)}{a\left( \frac{1}{t} + t \right)\left( \frac{1}{t} - t \right)}

= 13\frac{1}{\sqrt{3}}̃(t1t)\left( t - \frac{1}{t} \right)=23\sqrt{3}

\focal chord (PQ) = a (t+1t)2\left( t + \frac{1}{t} \right)^{2}

= a {(t1t)2+4}\left\{ \left( t - \frac{1}{t} \right)^{2} + 4 \right\}= a {(23\sqrt{3})2 + 4} = 16a