Solveeit Logo

Question

Question: The length of the diameter of the ellipse \(\frac{x^{2}}{25} + \frac{y^{2}}{9} = 1\) perpendicular t...

The length of the diameter of the ellipse x225+y29=1\frac{x^{2}}{25} + \frac{y^{2}}{9} = 1 perpendicular to the asymptotes of the hyperbola x216y29=1\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 passing through the first and third quadrant is

A

100431\frac{100}{\sqrt{431}}

B

150481\frac{150}{\sqrt{481}}

C

253\frac{25}{\sqrt{3}}

D

11211\sqrt{2}

Answer

150481\frac{150}{\sqrt{481}}

Explanation

Solution

x216y29=1\frac{x^{2}}{16}–\frac{y^{2}}{9} = 1

y = 3/4 x [equation of asymptotes]

line ⊥to asymptotes and passing through centre (diameter)

y = 43x- \frac{4}{3}x

point of intersection of line (diameter)

y = 43x- \frac{4}{3}xand ellipse x216y29=1\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1

A = (45481,60481)B=(45481,60481)\left( \frac{45}{\sqrt{481}}, - \frac{60}{\sqrt{481}} \right)B = \left( - \frac{45}{\sqrt{481}},\frac{60}{\sqrt{481}} \right)

Diameter = (90481)2+(120481)2=150481{\sqrt{\left( \frac{90}{\sqrt{481}} \right)^{2} + \left( \frac{120}{\sqrt{481}} \right)^{2}}}^{} = \frac{150}{\sqrt{481}}