Solveeit Logo

Question

Mathematics Question on Circle

The length of the common chord of the two circles x2+y24y=0x^{2}+y^{2}-4 y=0 and x2+y28x4y+11=0x^{2}+y^{2}-8 x - 4 y+11=0, is

A

1454cm\frac{\sqrt{145}}{4} \,cm

B

112cm\frac{\sqrt{11}}{2} \,cm

C

135cm\sqrt{135}\, cm

D

1354cm\frac{\sqrt{135}}{4}\, cm

Answer

1354cm\frac{\sqrt{135}}{4}\, cm

Explanation

Solution

Given equation of circles are x2+y24y=0x^{2}+y^{2}-4 y=0 and x2+y28x4y+11=0x^{2}+y^{2}-8 x-4 y+11=0 \therefore Equation of chord x2+y24y(x2+y28x4y+11)=0x^{2}+y^{2}-4 y-\left(x^{2}+y^{2}-8 x-4 y+11\right)=0 8x11=0\Rightarrow 8 x-11=0 Centre and radius of first circle are O(0,2)O(0,2) and OP=r=2O P=r=2. Now, perpendicular distance from O(0,2)O(0,2) to the line 8x118 x-11 is d=OM=8×01182=118d=O M=\frac{|8 \times 0-11|}{\sqrt{8^{2}}}=\frac{11}{8} In OMP\triangle OMP, PM=OP2OM2P M =\sqrt{O P^{2}-O M^{2}} =22(118)2=\sqrt{2^{2}-\left(\frac{11}{8}\right)^{2}} =412164=25612164=\sqrt{4-\frac{121}{64}}=\sqrt{\frac{256-121}{64}} =1358=\frac{\sqrt{135}}{8} \therefore Length of chord PQ=2PM=2×1358P Q=2 P M=2 \times \frac{\sqrt{135}}{8} =1354cm=\frac{\sqrt{135}}{4} \,cm