Solveeit Logo

Question

Mathematics Question on Conic sections

The length of the common chord of the ellipse (x+1)29+(y2)24=1\frac{(x+1)^{2}}{9}+\frac{(y-2)^{2}}{4}=1 and the circle x12+y22=1x-1^{2}+y-2^{2}=1 is

A

0

B

3ˉ\bar{3}

C

4

D

5

Answer

0

Explanation

Solution

Given : ellipse equation : ÷(x+1)29+÷(y2)24=1\div(x+1)^{2} 9+\div(y-2)^{2} 4=1
Circle equation : (x1)2+(y2)2=1(x-1)^{2}+(y-2)^{2}=1
\therefore center of ellipse =(1,2)=(-1,2)
a=3,b=2a =3, b =2
\therefore length of major axis is 66
\therefore length of minor is 44
\Rightarrow center of circle is (1,2(1,2 with radius r=1)r=1)
\Rightarrow so, wecanseeindiagramthatthetwoareasdoesnotintersectortoucheachlengthiso
\Rightarrow Hence, The length of common chord of the ellipse and circle is Zero(o).