Solveeit Logo

Question

Mathematics Question on Circle

The length of the chord x+y=3x + y = 3 intercepted by the circle x2+y22x2y2=0x^2 + y^2 - 2x - 2y - 2 = 0 is

A

72\frac{7}{2}

B

332\frac{3\sqrt{3}}{2}

C

14\sqrt{14}

D

172\frac{\sqrt{17}}{2}

Answer

14\sqrt{14}

Explanation

Solution

The centre of the circle is C(1,1)C (1,1) and radius of the circle is 22 , perpendicular distance from CC on ABA B, the chord x+y=3x+y=3 CD=1+132=12CD =\left|\frac{1+1-3}{\sqrt{2}}\right|=\frac{1}{\sqrt{2}} AD=412\Rightarrow AD =\sqrt{4-\frac{1}{2}} =72[AD=AC2CD2]=\sqrt{\frac{7}{2}}\left[ AD =\sqrt{ AC ^{2}- CD ^{2}}\right] Hence, the length of the chord AB=2ADAB =2 AD =272=14=2 \sqrt{\frac{7}{2}}=\sqrt{14}.