Solveeit Logo

Question

Question: The length of the chord of the parabola \[{x^2} = 4y\] having equation \[x - \sqrt 2 y + 4\sqrt 2 = ...

The length of the chord of the parabola x2=4y{x^2} = 4y having equation x2y+42=0x - \sqrt 2 y + 4\sqrt 2 = 0 is:
A.2112\sqrt {11}
B.323\sqrt 2
C.636\sqrt 3
D.828\sqrt 2

Explanation

Solution

Hint: First, we will rewrite the equation x2y+42=0x - \sqrt 2 y + 4\sqrt 2 = 0 in terms of xx and then substituting the above value of yy in the given equation of parabola. Then we will assume that the roots of the above quadratic equation are x1{x_1} and x2{x_2}. We will use the sum of the roots is ba\dfrac{{ - b}}{a} and the product of root is ca\dfrac{c}{a} of the standard quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0. Then we will compare the standard quadratic equation with the obtained equation to find the value of aa, bb and cc and then substituting these values of aa, bb and cc in the above formulas of sum and product of roots. Similarly, rewriting the equation x2y+42=0x - \sqrt 2 y + 4\sqrt 2 = 0 in terms of yy. And then using the obtained values in the distance formula, l=(x2x1)2+(y2y1)2l = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} from the above figure, where (x1,x2)\left( {{x_1},{x_2}} \right) is the point at A and (y1,y2)\left( {{y_1},{y_2}} \right) is the point at B to find the required length of the chord.

Complete step-by-step solution:
We are given that the equation of the parabola is x2=4y{x^2} = 4y.

Rewriting the equation x2y+42=0x - \sqrt 2 y + 4\sqrt 2 = 0 in terms of xx, we get

2y42=x \Rightarrow \sqrt 2 y - 4\sqrt 2 = x

Adding the above equation by 424\sqrt 2 on both sides, we get

2y42+42=x+42 2y=x+42  \Rightarrow \sqrt 2 y - 4\sqrt 2 + 4\sqrt 2 = x + 4\sqrt 2 \\\ \Rightarrow \sqrt 2 y = x + 4\sqrt 2 \\\

Dividing the above equation by 2\sqrt 2 on both sides, we get

2y2=x+422 y=x+422  \Rightarrow \dfrac{{\sqrt 2 y}}{{\sqrt 2 }} = \dfrac{{x + 4\sqrt 2 }}{{\sqrt 2 }} \\\ \Rightarrow y = \dfrac{{x + 4\sqrt 2 }}{{\sqrt 2 }} \\\

Substituting the above value of yy in the given equation of parabola, we get

x2=4(x+422) x2=22x+16 x222x16=0 ......eq.(1)  \Rightarrow {x^2} = 4\left( {\dfrac{{x + 4\sqrt 2 }}{{\sqrt 2 }}} \right) \\\ \Rightarrow {x^2} = 2\sqrt 2 x + 16 \\\ \Rightarrow {x^2} - 2\sqrt 2 x - 16 = 0{\text{ ......eq.(1)}} \\\

Let us assume that the roots of the above quadratic equation are x1{x_1} and x2{x_2}.

We know that the sum of the roots is ba\dfrac{{ - b}}{a} and the product of root is ca\dfrac{c}{a} of the standard quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0.

Comparing the standard quadratic equation with the equation (1)(1) to find the value of aa, bb and cc.

a=1 \Rightarrow a = 1
b=22\Rightarrow b = - 2\sqrt 2
c=16\Rightarrow c = - 16

Substituting these values of aa, bb and cc in the above formulas of sum and product of roots, we get

x1+x2=(22)1 x1+x2=22  \Rightarrow {x_1} + {x_2} = \dfrac{{ - \left( { - 2\sqrt 2 } \right)}}{1} \\\ \Rightarrow {x_1} + {x_2} = 2\sqrt 2 \\\ x1x2=161 x1x2=16  \Rightarrow {x_1}{x_2} = \dfrac{{ - 16}}{1} \\\ \Rightarrow {x_1}{x_2} = - 16 \\\

Rewriting the equation x2y+42=0x - \sqrt 2 y + 4\sqrt 2 = 0 in terms of yy, we get

x=2y+42\Rightarrow x = \sqrt 2 y + 4\sqrt 2

Substituting the above value of xx in the given equation of parabola, we get

(2y42)2=4y 2y2+3216y=4y 2y220y+32=0 ......eq.(2)  \Rightarrow {\left( {\sqrt 2 y - 4\sqrt 2 } \right)^2} = 4y \\\ \Rightarrow 2{y^2} + 32 - 16y = 4y \\\ \Rightarrow 2{y^2} - 20y + 32 = 0{\text{ ......eq.(2)}} \\\

Let us assume that the roots of the above quadratic equation are y1{y_1} and y2{y_2}.

Comparing the standard quadratic equation with the equation (2)(2) to find the value of aa, bb and cc.

a=2 \Rightarrow a = 2
b=20\Rightarrow b = - 20
c=32\Rightarrow c = 32

Substituting these values of aa, bb and cc in the above formulas of sum and product of roots, we get

y1+y2=(20)2 y1+y2=10  \Rightarrow {y_1} + {y_2} = \dfrac{{ - \left( { - 20} \right)}}{2} \\\ \Rightarrow {y_1} + {y_2} = 10 \\\ y1y2=322 y1y2=16  \Rightarrow {y_1}{y_2} = \dfrac{{32}}{2} \\\ \Rightarrow {y_1}{y_2} = 16 \\\

We know that the formula to find the length of the chord AB is l=(x2x1)2+(y2y1)2l = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} from the above figure, where (x1,x2)\left( {{x_1},{x_2}} \right) is the point at A and (y1,y2)\left( {{y_1},{y_2}} \right) is the point at B.

Rewrite the above formula of length of the chord, we get

l=x22+x122x1x2+y22+y122y1y2 l=x22+x12+2x1x22x1x22x1x2+y22+y12+2y1y22y1y22y1y2 l=(x2+x1)24x1x2+(y2+y1)24y1y2  \Rightarrow l = \sqrt {{x_2}^2 + {x_1}^2 - 2{x_1}{x_2} + {y_2}^2 + {y_1}^2 - 2{y_1}{y_2}} \\\ \Rightarrow l = \sqrt {{x_2}^2 + {x_1}^2 + 2{x_1}{x_2} - 2{x_1}{x_2} - 2{x_1}{x_2} + {y_2}^2 + {y_1}^2 + 2{y_1}{y_2} - 2{y_1}{y_2} - 2{y_1}{y_2}} \\\ \Rightarrow l = \sqrt {{{\left( {{x_2} + {x_1}} \right)}^2} - 4{x_1}{x_2} + {{\left( {{y_2} + {y_1}} \right)}^2} - 4{y_1}{y_2}} \\\

Substituting the values of x2+x1{x_2} + {x_1}, x1x2{x_1}{x_2}, y2+y1{y_2} + {y_1} and y1y2{y_1}{y_2} in the above equation, we get

l=(22)24(16)+(10)24(16) l=8+64+10064 l=108 l=63  \Rightarrow l = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} - 4\left( { - 16} \right) + {{\left( {10} \right)}^2} - 4\left( {16} \right)} \\\ \Rightarrow l = \sqrt {8 + 64 + 100 - 64} \\\ \Rightarrow l = \sqrt {108} \\\ \Rightarrow l = 6\sqrt 3 \\\

Thus, the length of the chord is 636\sqrt 3 .
Hence, option C is correct.

Note: In solving these types of questions, the only possibility for the mistake is that you might get confused if the line intersects with the parabola at two different and real points that means the line is the chord of the parabola. Also, we are supposed to write the values properly to avoid any miscalculation.