Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

The length of the chord of the ellipse x225+y216=1\frac{x^2}{25} + \frac{y^2}{16} = 1, whose mid-point is (1,25)\left(1, \frac{2}{5}\right), is equal to:

A

16915\frac{\sqrt{1691}}{5}

B

20095\frac{\sqrt{2009}}{5}

C

17415\frac{\sqrt{1741}}{5}

D

15415\frac{\sqrt{1541}}{5}

Answer

16915\frac{\sqrt{1691}}{5}

Explanation

Solution

Given the ellipse:

x225+y216=1\frac{x^2}{25} + \frac{y^2}{16} = 1 and a chord with midpoint (1,258)\left( 1, \frac{25}{8} \right).

Step 1. Equation of the Chord: The chord equation is:
x25+y40=1y=2008x5\frac{x}{25} + \frac{y}{40} = 1 \Rightarrow y = \frac{200 - 8x}{5}

Step 2. Substitute into the Ellipse: Substituting yy gives:

x225+(2008x5)216=1\frac{x^2}{25} + \frac{\left( \frac{200 - 8x}{5} \right)^2}{16} = 1

Simplifying:

2x280x+990=0x=20±102x^2 - 80x + 990 = 0 \Rightarrow x = 20 \pm \sqrt{10}

Step 3. Length of the Chord: Using the distance formula, the length is:
Length=16915\text{Length} = \frac{\sqrt{1691}}{5}