Solveeit Logo

Question

Question: The length of subtangent to the curve \(x^{2}y^{2} = a^{4}\) at the point \(( - a,a)\) is...

The length of subtangent to the curve x2y2=a4x^{2}y^{2} = a^{4} at the point

(a,a)( - a,a) is

A

3a3a

B

2a2a

C

a

D

4a

Answer

a

Explanation

Solution

Equation of the curve x2y2=a4x^{2}y^{2} = a^{4}.

Differentiating the given equation,

x22ydydx+y22x=0x^{2}2y\frac{dy}{dx} + y^{2}2x = 0dydx=yx\frac{dy}{dx} = \frac{- y}{x}(dydx)(a,a)=(aa)=1\left( \frac{dy}{dx} \right)_{( - a,a)} = - \left( \frac{a}{- a} \right) = 1

Therefore, sub-tangent = y(dydx)=a\frac{y}{\left( \frac{dy}{dx} \right)} = a.