Solveeit Logo

Question

Question: The length of perpendicular from the point \[(a\cos \alpha ,a\sin \alpha )\]upon the straight line \...

The length of perpendicular from the point (acosα,asinα)(a\cos \alpha ,a\sin \alpha )upon the straight line y=xtanα+C,c>0y = x\tan \alpha + C,c > 0is.
A. acosαa\cos \alpha
B. csin2xc{\sin ^2}x
C. csec2xc{\sec ^2}x
D. ccos2xc{\cos ^2}x

Explanation

Solution

Perpendicular distance say (d) from a given point P(x1,y1)P({x_1},{y_1})to a line Ax+By+c=0Ax + By + c = 0 is given as:
Ax1+By1+CA2+B2\Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}. Use this formula to get the answer.

__
Complete step-by-step answer:
The given point is P(acosα,asinα)(a\cos \alpha ,a\sin \alpha ).
And our equation of line isy=xtanα+Cy = x\tan \alpha + C.
Perpendicular distance say (d) from a given pointP(x1,y1)P({x_1},{y_1})to a line Ax+By+c=0Ax + By + c = 0 is given as:
Ax1+By1+CA2+B2\Rightarrow \dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}.

d=(tanα)(acosα)+(1)(asinα)+c(tanα)2+(1)2 d=(sinαcosα)(acosα)+(asinα)+c1+tan2α d=(asinα)+(asinα)+csec2α d=csecα d=ccosα  \Rightarrow d = \dfrac{{|\left( { - \tan \alpha } \right)(a\cos \alpha ) + (1)(a\sin \alpha ) + c|}}{{\sqrt {{{\left( { - \tan \alpha } \right)}^2} + {{(1)}^2}} }} \\\ \Rightarrow d = \dfrac{{|\left( { - \dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)(a\cos \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {1 + {{\tan }^2}\alpha } }} \\\ \Rightarrow d = \dfrac{{|( - a\sin \alpha ) + (a\sin \alpha ) + c|}}{{\sqrt {{{\sec }^2}\alpha } }} \\\ \Rightarrow d = \dfrac{c}{{\sec \alpha }} \\\ \Rightarrow d = c\cos \alpha \\\

None of the above options is correct.
The required perpendicular distance=ccosαc\cos \alpha .

Note: Working formula to solve such questions:
First simplify the equation of straight line.
Then put the points in our given straight line.
Then put the values in Ax1+By1+CA2+B2\dfrac{{|A{x_1} + B{y_1} + C|}}{{\sqrt {{A^2} + {B^2}} }}
Where, Ax+By+C=0Ax + By + C = 0 is the equation of straight line and (x1,y1)({x_1},{y_1}) are the points from which perpendicular distance is to be found.